
International Journal of Computing Science and Information Technology, 2018

ISSN: 2278-9669, April 2018 (http://ijcsit.org)

106 International Journal of Computing Science and Information www.ijcsit.org

 Special_ issue , April 2018

Software Engineering Development

N. Girija
 1
. A. Rupa Rekha

 2
.

Sri Krishna Arts and Science College, Sri Krishna Arts and Science College,

Coimbatore, India; Coimbatore, India,

girijan16bit120@skasc.ac.in ruparekhaa16bit145@skasc.ac.in

Received January 2018

Abstract

This paper aims to present a model of software engineering to represent its knowledge. The fundamental knowledge

relating to software engineering is well described in the textbook titled “Software Engineering by Ian Sommerville that

is now in its eighth edition and the white paper, Software Engineering Body Of Knowledge (SWEBOK), by the IEEE”

upon which software engineering is based. This paper gives an analysis of what software engineering is, what it consists

of and what it is used for software engineering is dynamic disciplines that have continuous growth in research in identi-

fying new methods, tools and methodologies that have cause vast improvement in software development and mainte-

nance to be more reliable and efficient. Past research critics on cost reduction, quality and flexibility have endless try to

design and develop many ways to improve these sectors are still causing impacts to the software industry.

Keywords:

Introduction
Software engineering is about teams. The problems to

solve are so complex or large, that a single developer

cannot solve them anymore. Software engineering is also

about communication. Teams do not consist only of de-

velopers, but also of testers, architects, system engineers,

customer, project managers, etc. Software projects can

be so large that we have to do careful planning. Imple-

mentation is no longer just writing code, but it is also

following guidelines, writing documentation and also

writing unit tests. But unit tests alone are not enough.

The different pieces have to fit together. And we have to

be able to spot problematic areas using metrics. They tell

us if our code follows certain standards. Once we are

finished coding, that does not mean that we are finished

with the project: for large projects maintaining software

can keep many people busy for a long time. Since there

are so many factors influencing the success or failure of

a project, we also need to learn a little about project

management and its pitfalls, but especially what makes

projects successful. And last but not least, a good soft-

ware engineer, like any engineer, needs tools, and you

need to know about them.]

SOFTWARE EVOLUTION:

The process of developing a software product using

software engineering principles and methods is referred to

as software evolution. This includes the initial devel-

opment of software and its maintenance and updates, till

desired software product is developed, which satisfies the

expected requirements.

Evolution starts from the requirement gathering process.

After which developers create a prototype of the intended

software and show it to the users to get their feedback at

the early stage of software product development. The

users suggest changes, on which several consecutive

updates and maintenance keep on changing too. This

process changes to the original software, till the desired

software is accomplished. Even after the user has desired

software in hand, the advancing technology and the

changing requirements force the software product to

change accordingly. Re-creating software from scratch

and to go one-on-one with requirement is not feasible.

Copyright © 2018 IJCSIT

107 International Journal of Computing Science and Information

www.ijcsit.org

 Special_ issue , April 2018

The only feasible and economical solution is to update the

existing software so that it matches the latest require-

ments.

SOFTWARE PARADIGMS:

Software paradigms refer to the methods and steps, which

are taken while designing the software. There are many

methods proposed and are in work today, but we need to

see where in the software engineering these paradigms

stand. These can be combined into various categories,

though each of them is contained in one another:

Programming paradigm is a subset of Software design paradigm

which is further a subset of Software development paradigm.

Software Development:
This Paradigm is known as software engineering paradigms

where all the engineering concepts pertaining to the develop-

ment of software are applied. It includes various researches and

requirement gathering which helps the software product to build.

It consists of –

 Requirement gathering

 Software design

 Programming

Software Design:
This paradigm is a part of Software Development and includes –

 Design

 Maintenance

 Programming

Programming:
This paradigm is related closely to programming aspect of

software development. This includes

 Coding

 Testing

 Integration.

CHARACTERISTICS OF GOOD SOFT-

WARE:

A software product can be judged by what it offers and

how well it can be used. This software must satisfy on the

following grounds:

 Operational

 Transitional

 Maintenance

Well-engineered and crafted software is expected to have the

following characteristics:

Operational:

This tells us how well software works in operations. It can be

measured on:

 Budget

 Usability

 Efficiency

 Correctness

 Functionality

 Dependability

 Security

 Safety

Transitional:

This aspect is important when the software is moved from

one platform to another:

 Portability

 Interoperability

 Reusability

 Adaptability.

Maintenance:
This aspect briefs about how well a software has the capa-

bilities to maintain itself in the ever-changing environment:

 Modularity

 Maintainability

 Flexibility

 Scalability

In short, Software engineering is a branch of computer sci-

ence, which uses well-defined engineering concepts required

to produce efficient, durable, scalable, in-budget and on-time

software products.

Copyright © 2018 IJCSIT.

108 International Journal of Computing Science and Information

www.ijcsit.org

 Special_ issue , April 2018

Software Development Life Cycle, SDLC for short, is a

well-defined, structured sequence of stages in software

engineering to develop the intended software product.

SDLC ACTIVITIES:

SDLC provides a series of steps to be followed to design

and develop a software product efficiently. SDLC

framework includes the following steps:

Communication:
This is the first step where the user initiates the request for

a desired software product. He contacts the service pro-

vider and tries to negotiate the terms. He submits his

request to the service providing organization in writing.

Requirement Gathering:
This step onwards the software development team works to

carry on the project. The team holds discussions with various

stakeholders from problem domain and tries to bring out as

much information as possible on their requirements. The

requirements are contemplated and segregated into user re-

quirements, system requirements and functional require-

ments. The requirements are collected using a number of

practices as given -

 studying the existing or obsolete system and soft-

ware,

 conducting interviews of users and developers,

 Referring to the database or collecting answers from

the questionnaires.

Feasibility Study:
After requirement gathering, the team comes up with a rough

plan of software process. At this step the team analyzes if a

software can be made to fulfill all requirements of the user

and if there is any possibility of software being no more

useful. It is found out, if the project is financially, practically

and technologically feasible for the organization to take up.

There are many algorithms available, which help the devel-

opers to conclude the feasibility of a software project.

System Analysis:
At this step the developers decide a roadmap of their plan and

try to bring up the best software model suitable for the pro-

ject. System analysis includes Understanding of software

product limitations, learning system related problems or

changes to be done in existing systems beforehand, identi-

fying and addressing the impact of project on organization

and personnel etc. The project team analyzes the scope of the

project and plans the schedule and resources accordingly.

Software Design:
Next step is to bring down whole knowledge of requirements

and analysis on the desk and design the software product. The

inputs from users and information gathered in requirement

gathering phase are the inputs of this step. The output of this

step comes in the form of two designs; logical design and

physical design. Engineers produce meta-data and data dic-

tionaries, logical diagrams, data-flow diagrams and in some

cases pseudo codes.

Coding:
This step is also known as programming phase. The imple-

mentation of software design starts in terms of writing pro-

gram code in the suitable programming language and de-

veloping error-free executable programs efficiently.

Testing:
An estimate says that 50% of whole software development

process should be tested. Errors may ruin the software from

critical level to its own removal. Software testing is done

while coding by the developers and thorough testing is

conducted by testing experts at various levels of code such as

module testing, program testing, product testing, in-house

testing and testing the product at user’s end. Early discovery

of errors and their remedy is the key to reliable software.

Integration:
Software may need to be integrated with the libraries, data-

bases and other program(s). This stage of SDLC is involved

in the integration of software with outer world entities.

Implementation:
This means installing the software on user machines. At

times, software needs post-installation configurations at user

end. Software is tested for portability and adaptability and

integration related issues are solved during implementation.

Operation and Maintenance:
This phase confirms the software operation in terms of more

efficiency and less errors. If required, the users are trained on,

or aided with the documentation on how to operate the

Copyright © 2018 IJCSIT

109 International Journal of Computing Science and Information

www.ijcsit.org

 Special_ issue , April 2018

software and how to keep the software operational. The

software is maintained timely by updating the code according

to the changes taking place in user end environment or

technology. This phase may face challenges from hidden

bugs and real-world unidentified problems.

Disposition:

As time elapses, the software may decline on the perfor-

mance front. It may go completely obsolete or may need

intense upgradation. Hence a pressing need to eliminate a

major portion of the system arises. This phase includes ar-

chiving data and required software components, closing

down the system, planning disposition activity and termi-

nating system at appropriate end-of-system time

SOFTWARE DEVELOPMENT PARADIGM:

The software development paradigm helps developer to se-

lect a strategy to develop the software. A software devel-

opment paradigm has its own set of tools, methods and pro-

cedures, which are expressed clearly and defines software

development life cycle. A few of software development

paradigms or process models are defined as follows:

Waterfall Model:
Waterfall model is the simplest model of software de-

velopment paradigm. It says the all the phases of SDLC

will function one after another in linear manner. That is,

when the first phase is finished then only the second phase

will start and so on.

This model assumes that everything is carried out and taken

place perfectly as planned in the previous stage and there is

no need to think about the past issues that may arise in the

next phase. This model does not work smoothly if there are

some issues left at the previous step. The sequential nature of

model does not allow us go back and undo or redo our ac-

tions.T his model is best suited when developers already have

designed and developed similar software in the past and are

aware of all its domains.

Iterative Model:
This model leads the software development process in

iterations. It projects the process of development in cyclic

manner repeating every step after every cycle of SDLC

process.

The software is first developed on very small scale and all the

steps are followed which are taken into consideration. Then,

on every next iteration, more features and modules are de-

signed, coded, tested and added to the software. Every cycle

produces a software, which is complete in itself and has more

features and capabilities than that of the previous one.

After each iteration, the management team can do work on

risk management and prepare for the next iteration. Because

a cycle includes small portion of whole software process, it is

easier to manage the development process but it consumes

more resources.

Spiral Model:
Spiral model is a combination of both, iterative model and

one of the SDLC model. It can be seen as if you choose

one SDLC model and combine it with cyclic process

(iterative model).

This model considers risk, which often goes un-noticed by

most other models. The model starts with determining

objectives and constraints of the software at the start of

one iteration. Next phase is of prototyping the software.

This includes risk analysis. Then one standard SDLC

model is used to build the software. In the fourth phase of

the plan of next iteration is prepared.

V – model:

The major drawback of waterfall model is we move to the

next stage only when the previous one is finished and

there was no chance to go back if something is found

wrong in later stages. V-Model provides means of testing

of software at each stage in reverse manner.

Copyright © 2018 IJCSIT.

110 International Journal of Computing Science and Information

www.ijcsit.org

 Special_ issue , April 2018

At every stage, test plans and test cases are created to

verify and validate the product according to the re-

quirement of that stage. For example, in requirement

gathering stage the test team prepares all the test cases in

correspondence to the requirements. Later, when the

product is developed and is ready for testing, test cases of

this stage verify the software against its validity towards

requirements at this stage. This makes both verification

and validation go in parallel. This model is also known as

verification and validation model.

Big Bang Model:

This model is the simplest model in its form. It requires

little planning, lots of programming and lots of funds.

This model is conceptualized around the big bang of

universe. As scientists say that after big bang lots of gal-

axies, planets and stars evolved just as an event. Likewise,

if we put together lots of programming and funds, you

may achieve the best software product.

For this model, very small amount of planning is required. It

does not follow any process, or at times the customer is not

sure about the requirements and future needs. So the input

requirements are arbitrary. This model is not suitable for

large software projects but good one for learning and ex-

perimenting.

SOFTWARE TESTING LIFE CYCLE

(STLC):
STLC is the testing process which is executed in system-

atic and planned manner. In STLC process, different

activities are carried out to improve the quality of the

product. Let’s quickly see what all stages are involved in

typical Software Testing Life Cycle (STLC).

Following steps are involved in Software Testing Life

Cycle (STLC). Each step is have its own Entry Criteria

and deliverable.

 Requirement Analysis

Test Planning

 Test Case Development

 Environment Setup

 Test Execution

 Test Cycle Closure

Ideally, the next step is based on previous step or we can

say next step cannot be started unless and until previous

step is completed. It is possible in the ideal situation, but

practically it is not always true.

So Let’s discuss what all activities and deliverable are

involved in the each step in detailed.

1. REQUIREMENT ANALYSIS:

Requirement Analysis is the very first step in Software

Testing Life Cycle (STLC). In this step Quality

Assurance (QA) team understands the requirement in

terms of what we will testing & figure out the testable

requirements. If any conflict, missing or not understood

any requirement, then QA team follow up with the vari-

ous stakeholders like Business Analyst, System Archi-

tecture, Client, Technical Manager/Lead etc to better

understand the detail knowledge of requirement. From

very first step QA involved in the where STLC which

helps to prevent the introducing defects into Software

under test. The requirements can be either Functional or

Non-Functional like Performance, Security testing. Also

requirement and Automation feasibility of the project can

be done in this stage (if applicable).

Test Planning:

Test Planning is most important phase of Software

testing life cycle where all testing strategy is defined.

Copyright © 2018 IJCSIT

111 International Journal of Computing Science and Information

www.ijcsit.org

 Special_ issue , April 2018

This phase also called as Test Strategy phase. In this

phase typically Test Manager (or Test Lead based on

company to company) involved to determine the effort

and cost estimates for entire project. This phase will be

kicked off once the requirement gathering phase is com-

pleted & based on the requirement analysis, start prepar-

ing the Test Plan. The Result of Test Planning phase will

be test plan or Test strategy & Testing Effort estima-

tion documents. Once test planning phase is completed

the QA team can start with test cases development activ-

ity.

Test Case Development:
The test case development activity is started once the test

planning activity is finished. This is the phase of STLC

where testing team write down the detailed test cases.

Along with test cases testing team also prepare the test

data if any required for testing. Once the test cases are

ready then these test cases are reviewed by peer members

or QA lead. Also the Requirement Traceability Matrix

(RTM) is prepared. The Requirement Traceability Matrix

is an industry-accepted format for tracking requirements

where each test case is mapped with the requirement.

Using this RTM we can track backward & forward

traceability.

Test Environment Setup:

Setting up the test environment is vital part of the

STLC. Basically test environment decides on which

conditions software is tested. This is independent

activity and can be started parallel with Test Case

Development. In process of setting up testing envi-

ronment test team is not involved in it. Based on

company to company may be developer or custom-

er creates the testing environment. Meanwhile test-

ing team should prepare the smoke test cases to

check the readiness of the test environment setup.

Test Execution:
Once the preparation of Test Case Development and Test

Environment setup is completed then test execution

phase can be kicked off. In this phase testing team start

executing test cases based on prepared test planning &

prepared test cases in the prior step. Once the test case is

passed then same can be marked as Passed. If any test

case is failed then corresponding defect can be reported

to developer team via bug tracking system & bug can be

linked for corresponding test case for further analysis.

Ideally every failed test case should be associated with at

least single bug. Using this linking we can get the failed

test case with bug associated with it. Once the bug fixed

by development team then same test case can be execut-

ed based on your test planning. If any of the test cases

are blocked due to any defect then such test cases can be

marked as Blocked, so we can GET the report based on

how many test cases passed, failed, blocked or not run

etc. Once the defects are fixed, same Failed or Blocked

test cases can be executed again to retest the functionali-

ty.

Test Cycle Closure:
Call out the testing team member meeting & evaluate

cycle completion criteria based on Test coverage, Quali-

ty, Cost, Time, Critical Business Objectives, and Soft-

ware. Discuss what all went good, which area needs to

be improve & taking the lessons from current STLC as

input to upcoming test cycles, which will help to im-

prove bottleneck in the STLC process. Test case & bug

report will analyze to find out the defect distribution by

type and severity. Once complete the test cycle then test

closure report & Test metrics will be prepared. Test re-

sult analysis to find out the defect distribution by type

and severity.

NEED OF SOFTWARE ENGINEERING:

The need of software engineering arises because of higher

rate of change in user requirements and environment on

which the software is working.

 Large software - It is easier to build a wall than to

a house or building, likewise, as the size of software

become large engineering has to step to give it a

scientific process.

 Scalability- If the software process were not

based on scientific and engineering concepts, it

would be easier to re-create new software than to

scale an existing one.

 Cost- As hardware industry has shown its skills

and huge manufacturing has lower down he price of

computer and electronic hardware. But the cost of

software remains high if proper process is not

adapted.

 Dynamic Nature- The always growing and

adapting nature of software hugely depends upon the

environment in which user works. If the nature of

software is always changing, new enhancements

need to be done in the existing one. This is where

software engineering plays a good role.

 Quality Management- Better process of software

development provides better and quality software

product.

S/W ENGINEERING PRINCIPLES:

 Software engineering is a layered technology. The

bedrock that supports software engineering is a quality

focus. The foundation for software engineering is the

http://www.softwaretestingclass.com/test-plan-template/
http://www.softwaretestingclass.com/software-estimation-techniques/
http://www.softwaretestingclass.com/software-estimation-techniques/

Copyright © 2018 IJCSIT.

112 International Journal of Computing Science and Information

www.ijcsit.org

 Special_ issue , April 2018

process layer. Software engineering process is the glue

that holds the technology layers together and enables

rational and timely development of computer software.

Process defines a framework for a set of key process

areas that must be established for effective delivery of

software engineering technology. The key process areas

form the basis for management control of software pro-

jects and establish the context in which technical meth-

ods are applied, work product (models, documents, data,

reports, forms, etc.) are produced, milestones are estab-

lished, quality is ensured, and change is properly man-

aged. Software engineering methods provide the tech-

nical how-to's for building software. That encompass

requirements analysis, design, program construction,

testing, and support. Software engineering methods rely

on a set of basic principles that govern each area of the

technology and include modeling activities and other

descriptive techniques. Software engineering tools pro-

vide automated or semi-automated support for the pro-

cess and the methods. When tools are integrated so that

information created by one tool can be used by another,

a system for the support of software development, called

computer-aided software engineering (CASE), is estab-

lished. CASE combines software, hardware, and a soft-

ware engineering database (a repository containing im-

portant information about analysis, design, program

construction, and testing) to create a software engineer-

ing environment analogous to CAD/CAE (comput-

er-aided design/engineering) for hardware.

CONCLUSION:
This paper takes a positive view of current progress and

future challenges in software engineering. We believe

the discipline has delivered and is well set to continue to

deliver both practical support to software developers and

the theoretical frameworks which will allow that practi-

cal support to be adopted, used and extended with confi-

dence. It is well known that software engineering inno-

vations take a surprisingly long time to percolate through

to everyday use. Despite this lag current software engi-

neering practice is being radically reshaped by ob-

ject-oriented design methods, CASE tools with powerful

code generation, testing and analysis environments, de-

velopment patterns, incremental delivery based

life-cycles, component models and document manage-

ment environments. All of these have been formed

through software engineering research. A vision of the

future of software engineering suggests a setting in

which developers are able to wire together distributed

components and services (heterogeneous and sourced

over the net) having established at an early stage,

through rigorous (yet easy-to-use) formal analysis that

the particular configuration will meet the requirements

(both functional and non-functional). The overall process

in which this takes place will have seamless tool support

that extends through to change over the system or service

life. Each facet of the resulting system or service will be

traceable to (and from) the originating stakeholders who

will be involved throughout the process.

REFERENCE:
1.https://en.wikibooks.org/wiki/Introduction_to_Softwar

e_Engineering/Software_Engineering

2.https://www.amazon.com/Software-Engineering-9th-Ia

n-Sommerville/.../0137035152

3.https://www.tutorialspoint.com/software_engineering/i

ndex.htm

4.https://books.google.co.in/books?id=DuinhInx0moC&l

pg=PP1&pg=PP1#v=onepage&q&f=false

5.HTTP://WWW.SOFTWARETESTINGCLASS.COM/SOFTWARE

-TESTING-LIFE-CYCLE-STLC/

